Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0301773, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593167

RESUMO

Respiratory syncytial virus (RSV) is the leading viral cause of bronchiolitis and pneumonia in infants and toddlers, but there currently is no licensed pediatric vaccine. A leading vaccine candidate that has been evaluated for intranasal immunization in a recently completed phase 1/2 clinical trial is an attenuated version of RSV strain A2 called RSV/ΔNS2/Δ1313/I1314L (hereafter called ΔNS2). ΔNS2 is attenuated by deletion of the interferon antagonist NS2 gene and introduction into the L polymerase protein gene of a codon deletion (Δ1313) that confers temperature-sensitivity and is stabilized by a missense mutation (I1314L). Previously, introduction of four amino acid changes derived from a second RSV strain "line 19" (I79M, K191R, T357K, N371Y) into the F protein of strain A2 increased the stability of infectivity and the proportion of F protein in the highly immunogenic pre-fusion (pre-F) conformation. In the present study, these four "line 19" assignments were introduced into the ΔNS2 candidate, creating ΔNS2-L19F-4M. During in vitro growth in Vero cells, ΔNS2-L19F-4M had growth kinetics and peak titer similar to the ΔNS2 parent. ΔNS2-L19F-4M exhibited an enhanced proportion of pre-F protein, with a ratio of pre-F/total F that was 4.5- to 5.0-fold higher than that of the ΔNS2 parent. The stability of infectivity during incubation at 4°C, 25°C, 32°C and 37°C was greater for ΔNS2-L19F-4M; for example, after 28 days at 32°C, its titer was 100-fold greater than ΔNS2. ΔNS2-L19F-4M exhibited similar levels of replication in human airway epithelial (HAE) cells as ΔNS2. The four "line 19" F mutations were genetically stable during 10 rounds of serial passage in Vero cells. In African green monkeys, ΔNS2-L19F-4M and ΔNS2 had similar growth kinetics, peak titer, and immunogenicity. These results suggest that ΔNS2-L19F-4M is an improved live attenuated vaccine candidate whose enhanced stability may simplify its manufacture, storage and distribution, which merits further evaluation in a clinical trial in humans.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Animais , Humanos , Chlorocebus aethiops , Criança , Vacinas contra Vírus Sincicial Respiratório/genética , Células Vero , Anticorpos Antivirais , Proteínas Virais de Fusão/genética , Vírus Sincicial Respiratório Humano/genética , Anticorpos Neutralizantes , Mutação de Sentido Incorreto
2.
iScience ; 26(12): 108490, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38144450

RESUMO

Next-generation SARS-CoV-2 vaccines are needed that induce systemic and mucosal immunity. Murine pneumonia virus (MPV), a murine homolog of respiratory syncytial virus, is attenuated by host-range restriction in nonhuman primates and has a tropism for the respiratory tract. We generated MPV vectors expressing the wild-type SARS-CoV-2 spike protein (MPV/S) or its prefusion-stabilized form (MPV/S-2P). Both vectors replicated similarly in cell culture and stably expressed S. However, only S-2P was associated with MPV particles. After intranasal/intratracheal immunization of rhesus macaques, MPV/S and MPV/S-2P replicated to low levels in the airways. Despite its low-level replication, MPV/S-2P induced high levels of mucosal and serum IgG and IgA to SARS-CoV-2 S or its receptor-binding domain. Serum antibodies from MPV/S-2P-immunized animals efficiently inhibited ACE2 receptor binding to S proteins of variants of concern. Based on its attenuation and immunogenicity in macaques, MPV/S-2P will be further evaluated as a live-attenuated vaccine for intranasal immunization against SARS-CoV-2.

3.
Cell ; 185(25): 4811-4825.e17, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36423629

RESUMO

Pediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza-virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal immunoglobulin A (IgA) and IgG responses. High levels of S-specific antibodies were also induced in serum, which efficiently neutralized SARS-CoV-2 variants of concern of alpha, beta, and delta lineages, while their ability to neutralize Omicron sub-lineages was lower. Furthermore, B/HPIV3/S-6P induced robust systemic and pulmonary S-specific CD4+ and CD8+ T cell responses, including tissue-resident memory cells in the lungs. Following challenge, SARS-CoV-2 replication was undetectable in airways and lung tissues of immunized macaques. B/HPIV3/S-6P will be evaluated clinically as pediatric intranasal SARS-CoV-2/parainfluenza virus type 3 vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Macaca mulatta , COVID-19/prevenção & controle , SARS-CoV-2/genética
4.
bioRxiv ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35665011

RESUMO

Pediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways, as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal IgA and IgG responses. High levels of S-specific antibodies were also induced in serum, which efficiently neutralized SARS-CoV-2 variants of concern. Furthermore, B/HPIV3/S-6P induced robust systemic and pulmonary S-specific CD4+ and CD8+ T-cell responses, including tissue-resident memory cells in lungs. Following challenge, SARS-CoV-2 replication was undetectable in airways and lung tissues of immunized macaques. B/HPIV3/S-6P will be evaluated clinically as pediatric intranasal SARS-CoV-2/parainfluenza virus type 3 vaccine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...